61 research outputs found

    Is Classical Mathematics Appropriate for Theory of Computation?

    Get PDF
    Throughout this paper, we are trying to show how and why our Mathematical frame-work seems inappropriate to solve problems in Theory of Computation. More exactly, the concept of turning back in time in paradoxes causes inconsistency in modeling of the concept of Time in some semantic situations. As we see in the first chapter, by introducing a version of “Unexpected Hanging Paradox”,first we attempt to open a new explanation for some paradoxes. In the second step, by applying this paradox, it is demonstrated that any formalized system for the Theory of Computation based on Classical Logic and Turing Model of Computation leads us to a contradiction. We conclude that our mathematical frame work is inappropriate for Theory of Computation. Furthermore, the result provides us a reason that many problems in Complexity Theory resist to be solved.(This work is completed in 2017 -5- 2, it is in vixra in 2017-5-14, presented in Unilog 2018, Vichy

    By considering Fuzzy time, P=BPP (P*=BPP*)

    Get PDF
    The reason ability of considering time as a fuzzy concept is demonstrated in [7],[8]. One of the major questions which arise here is the new definitions of Complexity Classes. In [1],[2],…,[11] we show why we should consider time a fuzzy concept. It is noticeable to mention that that there were many attempts to consider time as a Fuzzy concept, in Philosophy, Mathematics and later in Physics but mostly based on the personal intuition of the authors or as a style of Fuzzifying different various of the concepts. Consequently, fuzzifying time doesn’t go to be popular. In the new attempts we are trying to show why we are somewhat forced to consider time as a Fuzzy concept. It is mostly based on the “Unexpected Hanging Paradox” introduced by a Swedish Mathematician Lennart Ekbom. Our question is:” what will be the impact of it in Theory of Computation and Physics?”. Here, we discuss about the impact of fuzzifying time on Theory of Computation

    “Fuzzy time”, from paradox to paradox (Does it solve the contradiction between Quantum Mechanics & General Relativity?)

    Get PDF
    Although Fuzzy logic and Fuzzy Mathematics is a widespread subject and there is a vast literature about it, yet the use of Fuzzy issues like Fuzzy sets and Fuzzy numbers was relatively rare in time concept. This could be seen in the Fuzzy time series. In addition, some attempts are done in fuzzing Turing Machines but seemingly there is no need to fuzzy time. Throughout this article, we try to change this picture and show why it is helpful to consider the instants of time as Fuzzy numbers. In physics, though there are revolutionary ideas on the time concept like B theories in contrast to A theory also about central concepts like space, momentum… it is a long time that these concepts are changed, but time is considered classically in all well-known and established physics theories. Seemingly, we stick to the classical time concept in all fields of science and we have a vast inertia to change it. Our goal in this article is to provide some bases why it is rational and reasonable to change and modify this picture. Here, the central point is the modified version of “Unexpected Hanging” paradox as it is described in "Is classical Mathematics appropriate for theory of Computation".This modified version leads us to a contradiction and based on that it is presented there why some problems in Theory of Computation are not solved yet. To resolve the difficulties arising there, we have two choices. Either “choosing” a new type of Logic like “Para-consistent Logic” to tolerate contradiction or changing and improving the time concept and consequently to modify the “Turing Computational Model”. Throughout this paper, we select the second way for benefiting from saving some aspects of Classical Logic. In chapter 2, by applying quantum Mechanics and Schrodinger equation we compute the associated fuzzy number to time. These, provides a new interpretation of Quantum Mechanics.More exactly what we see here is "Particle-Fuzzy time" interpretation of quantum Mechanics, in contrast to some other interpretations of Quantum Mechanics like " Wave-Particle" interpretation. At the end, we propound a question about the possible solution of a paradox in Physics, the contradiction between General Relativity and Quantum Mechanics

    About Fuzzy time-Particle interpretation of Quantum Mechanics (it is not an innocent one!) version one

    Get PDF
    The major point in [1] chapter 2 is the following claim: “Any formalized system for the Theory of Computation based on Classical Logic and Turing Model of Computation leads us to a contradiction.” So, in the case we wish to save Classical Logic we should change our Computational Model. As we see in chapter two, the mentioned contradiction is about and around the concept of time, as it is in the contradiction of modified version of paradox. It is natural to try fabricating the paradox not by time but in some other linear ordering or the concept of space. Interestingly, the attempts to have similar contradiction by the other concepts like space and linear ordering, is failed. It is remarkable that, the paradox is considered either Epistemological or Logical traditionally, but by new considerations the new version of paradox should be considered as either Logical or Physical paradox. Hence, in order to change our Computational Model, it is natural to change the concept of time, but how? We start from some models that are different from the classical one but they are intuitively plausible. The idea of model is somewhat introduced by Brouwer and Husserl [3]. This model doesn’t refute the paradox, since the paradox and the associated contradiction would be repeated in this new model. The model is introduced in [2]. Here we give some more explanations

    “Fuzzy time”, a Solution of Unexpected Hanging Paradox (a Fuzzy interpretation of Quantum Mechanics)

    Get PDF
    Although Fuzzy logic and Fuzzy Mathematics is a widespread subject and there is a vast literature about it, yet the use of Fuzzy issues like Fuzzy sets and Fuzzy numbers was relatively rare in time concept. This could be seen in the Fuzzy time series. In addition, some attempts are done in fuzzing Turing Machines but seemingly there is no need to fuzzy time. Throughout this article, we try to change this picture and show why it is helpful to consider the instants of time as Fuzzy numbers. In physics, though there are revolutionary ideas on the time concept like B theories in contrast to A theory also about central concepts like space, momentum… it is a long time that these concepts are changed, but time is considered classically in all well-known and established physics theories. Seemingly, we stick to the classical time concept in all fields of science and we have a vast inertia to change it. Our goal in this article is to provide some bases why it is rational and reasonable to change and modify this picture. Here, the central point is the modified version of “Unexpected Hanging” paradox as it is described in "Is classical Mathematics appropriate for theory of Computation".This modified version leads us to a contradiction and based on that it is presented there why some problems in Theory of Computation are not solved yet. To resolve the difficulties arising there, we have two choices. Either “choosing” a new type of Logic like “Para-consistent Logic” to tolerate contradiction or changing and improving the time concept and consequently to modify the “Turing Computational Model”. Throughout this paper, we select the second way for benefiting from saving some aspects of Classical Logic. In chapter 2, by applying quantum Mechanics and Schrodinger equation we compute the associated fuzzy number to time
    • …
    corecore